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Calculations of unsteady viscous flow past a circular 
cylinder 

By R. B. PAYNE 
Computing Machine Laboratory, University of Manchester 

(Receiz7ed 1 November 1957) 

SUMMARY 
-4 numerical solution has been obtained for the starting flow of 

a viscous fluid past a circular cylinder at Reynolds numbers 40 
and 100. The method used is the step-by-step forward integration 
in time of Helmholtz’s vorticity equation. The  advantage of 
working with the vorticity is that calculations can be confined to 
the region of non-zero vorticity near the cylinder. 

The general features of the flow, including the formation of 
the eddies attached to the rear of the cylinder, have been determined, 
and the drag has been calculated. At R = 40 the drag on the 
cylinder decreases with time to a value very near that for the 
steady flow. 

1. INTRODUCTION 
The general features of the flow of a viscous fluid past a circular cylinder 

are known from experiments. At low Reynolds numbers a steady 
symmetrical flow exists. At Reynolds numbers above about 40 the 
symmetrical flow is unstable and periodic oscillations known as the 
K i r m h  vortex sheet appear. Numerical solutions of the steady flow 
have heen obtained at Reynolds numbers 10 and 20 by Thom (1933) and 
at R = 40 by Kawaguti (1953). 

I n  this paper the two-dimensional flow of a viscous fluid started 
impulsively from rest and moving perpendicular to the axis of a circular 
cylinder is investigated. Apart from its intrinsic interest, this flow is 
expected to throw light on the high speed flow around yawed bodies of 
revolution. The method employed, which is the integration of Helmholtz’s 
vorticity equation, is that which was used by the author (Payne 1956) for 
the starting and perturbation of a two-dimensional jet. The  preliminary 
results, described below, were obtained for the starting flow past a circular 
cylinder at Reynolds numbers 40 and 100. I n  these calculations no 
asymmetry was introduced. With the aid of a more powerful electronic 
computer, it is intended to proceed to higher Reynolds numbers and also 
to  investigate the unsymmetrical flow. 
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2. EQUATIONS OF MOTION AND BOUNDARY CONDITIONS 

Use is made of Helmholtz's vorticity equation with allowance for 
viscosity, 

(1) 

R being the Reynolds number, to find the vorticity w at successive small 
intervals of time. (The cylinder has unit radius and the velocity at infinity 
is unity.) The  velocity ( u , ~ )  is found by adding to the velocity of the 
classical inviscid steady flow the velocity due to the vorticity, which is given 
by 

The  boundary condition that on the cylinder there is no flow perpendicular 
to the surface is satisfied by introducing image vorticity, while the no-slip 
condition causes vorticity to be generated on the cylinder. The  vorticity 
is diffused and convected away, giving a region of non-zero vorticity near 
the cylinder. T h e  calculations are confined to this region. 

It is convenient to use coordinates 5 = log Y ,  where Y is the radial distance, 
and 8, the azimuthal angle. Helmholtz's vorticity equation becomes 

at a t  ae a 2 (a., p+z2 ' 
aW a 

Y2 - + - (YUW) + - ( Y V W )  = 

where U and V are the radial and transverse components of velocity. 

3. FINITE DIFFERENCES 

The  plane is covered by a mesh of points 5 = kA,  19 =.jA, where k and j 
are integers and A is a constant. From equation (3), and replacing the space 
derivatives by central difference formulae and using a forward difference 
for the time derivative, a first approximation to the vorticity at the next 
step in time is 

fig:') = w'$ + A t  F( Ug.3, V$,)J, a?,>) 
where 

F ( U t 3 ,  vg)J, = - (n)  ( 1 2 )  ( n )  ,(n) 
1 

('k-1 ' k - l , j  W k - l , j - r l C + l  uk+l,j  

+ Y k  Vt'j' - 1 Wt:]- 1 - Y k  v k , j  + 1 mi.:]+ 1) + 
k + l , j  + 

The velocity a t  time (n+ 1)At is then evaluated from the integrals (Z), as 
approximated by equations (6), below giving 

@+I)). Ug,fl) = u &J(fi:;I)), vg,p = V E , J ( Q ~ , ~  
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Then a second approximation to the vorticity at time (n i- 1)At is 

(4) ,(a+ 1) = l Q ( n  + 1) +&{@:+At F(U(n+l) V(n+l) fiR(fi+l) 
k,j 2 k,j K , J  9 K,J 7 K,J  

Since the vorticity at each lattice-point is times the circulation around 
a quadrilateral of area A2 centred on the point, and this circulation is VA 
if the transverse velocity is V just away from the surface and 0 on the surface, 
the vorticity at points on the cylinder is given by 

,(n+1) = p + l )  (5) w 0,j la- 
The velocity due to the vorticity is obtained from the formulae 

where 
A sin bA 
2n exp(aA) + exp( - aA) - 2 cos bA A , ,  = - - i f a f 0  o r b # O ,  

exp(aA) - cos bA 
i f a f O  o r b f O ,  

A 
271. exp Ba,b = - (aA) + exp( - aA) - 2 cos bA 

4. DRAG 
The total drag on the cylinder is equal to the rate of decrease of momentum 

of the fluid, from which it follows (Phillips 1956) that 

The drag coefficient is C, = D/(+pU2, 2r0) (where ro = U, = 1 in our 
calculation, ro being the radius of the cylinder). 
and 8, and replacing the double integral by a double sum, the drag coefficient 
at time (a  + +)At is found as 

Using the coordinates 

For Reynolds number 40 the drag coefficient thus calculated was 
initially 3.00, decreasing rapidly to 1.91 after unit time (the time in which 
the fluid at infinity moves a distance equal to the radius of the cylinder) 
and thereafter decreasing more slowly (see figure I). At t = 6 it is about 
2% above the value C, = 1.6177 calculated by- Kawaguti for the steady 
flow at R = 40. For Reynolds number 100, the drag coefficient was initially 
1.20, decreasing to a minimum of 1-00 just before t = 1 and rising to 1-10 
at t = 3. It is easily shown that for all Reynolds numbers there is also an 
impulsive drag coefficient of 7~ when the flow is started. 

F 2  
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For small t ,  the boundary layer is very thin so the value of C, given by 
equation (8) will not be accurate. The  coarse mesh will not satisfactorily 
cover the flow within the boundary layer itself. I n  this range of t it is 
necessary to use the boundary layer solution of the equations of motion. 

R = 1 0 0  
1 

I I I I I I I 
0 7 2 3 4 5 6 

t 
Figure 1. The variation of the drag coefficient with time for the starting flow past a 

circular cylinder. The value obtained by Kawaguti for the steady flow at  
Reynolds number 40 is also shown, together with the analytical solution for 
small t .  The boundary layer solution is not valid beyond the instant at 
which separation occurs ; however, beyond separation it is shown as a broken 
line suggesting a method of joining it to the numerical solution. 

T o  the first approximation as t -+ 0 (Goldstein & Rosenhead 1936), 

Hence 

From equation (7)  it then follows that 

d 
dt  

= - ( 2 ~  + 8 2 / ( ~ ~ t )  + O(t)} 

N 42 / (2~ /Rt )  as t-+ 0. 
This is also shown in figure 1. It is interesting to note that skin friction and 
pressure contribute equally to the total drag for small f, the respective drag 
coefficients being 2\/(2n/Rt). Since the boundary layer ultimately 
separates, this value of the drag will not be reliable beyond (at most) 
f = 0-32, when separation occurs (according to the boundary layer solution). 
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Figure 2. The symmetrical starting flow past a circular cylinder at Reynolds number 
100 at time 2. In the upper half is shown the vorticity distribution and in the 
lower half the streamlines, the direction of flow being from left to right. The 
vorticity at the rear of the cylinder causes a reversed flow near the rear stanga- 
tion point. 
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Figure 3. The symmetrical starting flow at Reynolds number 100 at time 6 .  The 
two eddies attached to the rear of the cylinder have increased in size. 

Figure 4. The symmetrical starting flow at Reynolds number 40 at time 6. The  
vorticity spreads further out laterally at this lower Reynolds number and there 
is a greater reduction in the velocity near the cylinder. 
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5. RESULTS 
The symmetrical flow past a cylinder starting impulsively from rest 

has been calculated for Reynolds numbers 100 (figures 2 and 3) and 40 
(figure 4). The space mesh size used was A = &r = 0.20944 so that 
there were 30 mesh points round the cylinder at intervals of 12 degrees. 
The time interval was taken as At = 0.1. 

The vorticity generated at the cylinder is transported round towards 
the rear stagnation point. This vorticity induces a reversed flow on the 
cylinder, the velocity component at the mesh points nearest the rear stagnation 
point changing sign at t = 1.5. The  two eddies attached to the rear of the 
cylinder appear and increase in size. At t = 6.0 they have spread 1.5 radii 
downstream (at both Reynolds numbers 100 and 40), which is about half 
the length of the standing eddies in Kawaguti’s steady flow at Reynolds 
number 40. 

At the two Reynolds numbers the starting flow is similar except that 
vorticity is spread over a larger area for R = 40 than for R = 100. The 
velocity within and near the rear eddies is also much smaller for the lower 
Reynolds number. For the drag coefficients in the two cases see figure 1. 
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